
(12) United States Patent
Cullimore

USOO8335864B2

US 8,335,864 B2
*Dec. 18, 2012

(10) Patent No.:
(45) Date of Patent:

(54) TCP/IPSTACK-BASED OPERATING SYSTEM

(75) Inventor: Ian Henry Stuart Cullimore,
Leominster (GB)

(73) Assignee: IOTA Computing, Inc., Palo Alto, CA
(US)

Notice: (*) Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.
This patent is Subject to a terminal dis
claimer.

(21) 13/277,111

(22)

Appl. No.:

Filed: Oct. 19, 2011

(65) Prior Publication Data

US 2012/OO42O88A1 Feb. 16, 2012

Related U.S. Application Data
Continuation of application No. 12/938,290, filed on
Nov. 2, 2010.

(63)

(30) Foreign Application Priority Data

Nov. 3, 2009
Jun. 29, 2010

(51)

(GB) 0919253.5
(GB) 1O10886.8

Int. C.
G06F 15/16 (2006.01)

(52) U.S. Cl. 709/250; 709/230; 710/1: 712/1;
7 1871

(58) Field of Classification Search 709/201-203,
709/217 230, 244 247, 250; 710/1: 712/1;

7 1871
See application file for complete search history.

40

460

r: We sever

Listen port 80

440

430 8

4

450

S8i serior

(56) References Cited

U.S. PATENT DOCUMENTS

5,896.499 A 4/1999 McKelvey
5,968,133 A 10, 1999 Latham et al.
7,055,173 B1 5/2006 Chaganty et al.
7,246,272 B2 7/2007 Cabezas et al.
7,334,124 B2 2/2008 Pham et al.
7,424,710 B1* 9/2008 Nelson et al. T18, 1

(Continued)

FOREIGN PATENT DOCUMENTS

1622517 6, 2005

(Continued)
OTHER PUBLICATIONS

CN

Anh et al. “Real-Time Operating Systems for Small Microcontrol
lers.” IEEE Micro, Sep.-Oct. 2009. vol. 29, No. 5, p. 30-45.
Accessed Feb. 15, 2011—IEEExplore http://ieeexplore.ieee.org/
Xpis/abs all.jsp?arnumber=5325154.

(Continued)
Primary Examiner — David Lazaro
(74) Attorney, Agent, or Firm — Carr & Ferrell LLP
(57) ABSTRACT
Systems and corresponding methods include a system having
an operating system based wholly around a protocol stack,
such as a Transmission Control Protocol/Internet Protocol
(TCP/IP) stack. The system may include a central processing
unit (CPU) including the operating system embedded therein,
and a network interface coupled with a network and the CPU.
The network may be the Internet. The operating system is
fundamentally a state machine. The kernel of the operating
system is fundamentally just a protocol stack for communi
cating with one or more devices of the network via the net
work interface. The protocol stack may be a TCP/IP protocol
stack, UDP/IP stack or combinations thereof. A chip may be
provided that includes the TCP/IP stack state machine-based
operating system embedded in a CPU. The resultant chip may
be ultra low power, miniscule in size, and IP-centric.

24 Claims, 8 Drawing Sheets

7

Listen port 18

State (Y)
V

WA

440

1.

TCFP3task State Macine
410

420

raisit

s
Etheret 882-8 artware Receive

(or may be "saft” controller

US 8,335,864 B2
Page 2

U.S. PATENT DOCUMENTS

7,509,673 B2 3/2009 Swander et al.
7,657,933 B2 2/2010 Hussain et al.
7,694,158 B2 4/2010 Melpignano et al.
7,734,933 B1 6, 2010 Marek et al.
7,886,340 B2 2/2011 Carley
8,055,822 B2 11/2011 Bernstein et al.
8,132,001 B1 3/2012 Patten et al.

2002fOOO7420 A1 1/2002 Eydelman et al.
2002/0167965 A1 1 1/2002 Beasley et al.
2004/0049624 A1 3f2004 Salmonsen T10,306
2004/0093.520 A1 5, 2004 Lee et al.
2004.0143751 A1 7, 2004 Peikari
2004/0210320 A1 10/2004 Pandya
2006/0026162 A1 2/2006 Salmonsen et al. 707/10
2007/OOO8976 A1 1/2007 Meenan
2007/0022421 A1 1/2007 Lescouet et al.
2007/01 18596 A1* 5/2007 Patiejunas TO9,203
2007/0211633 A1* 9, 2007 Gunawardena et al. 370,232
2007,0255861 A1 11, 2007 Kain et al.
2008, 0046891 A1 2/2008 Sanchorawala et al.
2008.0109665 A1 5/2008 Kuhlmann et al.
2009, O126003 A1 5, 2009 Touboul
2009. O158299 A1 6, 2009 Carter
2009/0235263 A1 9, 2009 Furukawa
2010.0005323 A1 1/2010 Kuroda et al.
2010, 011511.6 A1 5/2010 ASnaashari
2010, 0131729 A1 5, 2010 Fulcheri et al.
2010.0185719 A1 7, 2010 Howard
2010, 01922.25 A1 7, 2010 Ma et al.
2011/0002184 A1 1/2011 Kim
2011 OO88037 A1 4/2011 Glistvain
2011/O107357 A1 5, 2011 Cullimore
2012fOO17262 A1 1/2012 Kapoor et al.

FOREIGN PATENT DOCUMENTS

TW 200924424 6, 2009

OTHER PUBLICATIONS

Cavium Networks, "NitroXCR) Lite. Accessed on Feb. 16, 2011 at
http://www.caviumnetworks.com/processor Securit nitroxLite.
htm.

Ferrante et al. "Application-Driven Optimization of VLIW Architec
tures: A Hardware-Software Approach.” Proceedings of the 11th
IEEE RealTime and Embedded Technology and Applications Sym
posium, Mar. 7-10, 2005. 10 pages. Accessed Feb. 15, 2011—
IEEExplore http://ieeexplore.ieee.org/xpls/abs all.
jsp?arnumber=1388380.
“IP Multimedia Subsystems.” Freescale Semiconductor, 2006. (bro
chure) Accessed Feb. 16, 2011 http://cachereescale.com/files/
32bil Jcloc/brochure/BRIMSSOLUTIONS.pdf.
Green Hills Software, "u-velOSity Real-Time Microkernel.”
Accessed on Feb. 16, 2011 at http://www.ghs.com/products/micro
velosity.html.
“u—velOSity Microkernel.” (datasheet—2pgs.) Green Hills Soft
ware, Inc., 2006.
Journal of Technology & Science, “Express Logic, Inc.; Express
Logic and IAR Systems TeamUp to Provide ThreadXRTOS Support
in IAR Embedded Workbench IDE for Freescale ColdFire.
Accessed on Feb. 16, 2011 at http://procquest.umi.com.mutex.gmu.
edu/pqdweb?index=7&dlid=1541305
“Yoggie Pico Personal Security Appliance, www.yoggie.com.
(archived on May 31.2009) Accessed Feb. 16, 2011—Archive.org).
“Yoggie Security Unveils Miniature Hardware Appliance,” www.
yoggie.com. (archived on May 31.2009) Accessed Feb. 16, 2011—
Archive.org.
“Yoggie Unveils Miniature Internet Security Devices for Mac Com
puters.” M2 Telecomworldwire,Oct. 14.2008. Accessed Feb. 18,
2011—Academic Source Complete).
T.K. Kan, A. Raghunathan and N.K. Jha: "A simulation framework
for energy-consumption analysis of OS-driven embedded applica
tions.” IEEE, vol. 22, No. 9, Sep. 2003.

International Search Report and Written Opinion mailed Dec. 30.
2010 in Patent Cooperation Treaty application No. PCT/US 10/
55186, filed Nov. 2, 2010.
Nguyen et al. “Real-Time Operating Systems for Small
Microcontrollers.” IEEE Micro, Sep.-Oct., 2009. vol. 29, No. 5, p.
30-45. Accessed Feb. 15, 2011—IEEExplore http://ieeexplore.
ieee.org/xpis/abs all.jsp?arnumber=5325154.
Ashkenazi et al. “Platform Independent Overall Security Architec
ture in Multi-Processor System-On-Chip ICs for Use in Mobile
Phones and Handheld Devices.” World Automation Congress, Jul.
24-26, 2006. Accessed Feb. 18, 2011—Engineering Village).
Bathen et al. “Inter and Intra Kernel Reuse Analysis Driven Pipelin
ing on Chip-Multiprocessors.” International Symposium on VLSI
Design, Automation and Test, Apr. 26-29, 2010. p. 203-206.
Accessed Feb. 16, 2011—IEEExplore http://ieeexplore.ieee.org/
Xpis/abs all.jsp?amumber=5496725.
Bolchini et al. “Smart Card Embedded Information Systems: A
Methodology for Privacy Oriented Architectural Design.” Data &
Knowledge Engineering, 2002. vol. 41, p. 159-182. Accessed Feb.
16, 2011—ScienceDirect.com.
Cavium Networks, “Nitrox (R. DPI L7 Content Processor Family.”
Accessed on Feb. 16, 2011 at http://www.caviumnetworks.com/pro
cessor NITROX-DPI.html.
Cavium Networks, "NitroXCR) Lite. Accessed on Feb. 16, 2011 at
http://www.caviumnetworks.com/processor Secrit nitroxLite.htm.
Ferrante et al. "Application-Driven Optimization of VLIW Archi
tectures: A Hardware-Software Approach.” Proceedings of the 11th
IEEE RealTime and Embedded Technology and Applications Sym
posium, Mar. 7-10, 2005 p. 128-137. Accessed Feb. 15, 2011—
IEEExplore http://ieeexplore.ieee.org/xpls/abs all.
jsp?anrnumber=1388380.
Freescale Semiconductor, “IP Multimedia Subsystems.” 2006. (bro
chure) Acessed Feb. 16, 2011 http://cachelreescale.com/files/
32bil Jcloc/brochure/BRIMSSOLUTIONS.pdf.
Green Hills Software, Inc., "u-velOSity Real-Time Microkernel.”
Accessed on Feb. 16, 2011 at http://www.ghs.com/products/micro
velosity.html.
Green Hills Software, Inc., "u-velOSity Microkernel.” (datasheet—
2pgs.) 2006.
Hattori. “Challenges for Low-Power Embedded SOC’s.” Interna
tional Symposium on VLSI Design, Automation and Test, Apr. 25-27.
2007. 4pgs. Accessed Feb. 16, 2011—IEEExplore http://
ieeexplore.ieee.org/xpis/abs all.jsp?arnumber 423.9406.
Journal of Technology & Science, “Express Logic, Inc.; Express
Logic and IAR Systems TeamUp to Provide ThreadXRTOS Support
in IAR Embedded Workbench IDE for Freescale ColdFire,
Accessed on Feb. 16, 2011 at http://produest.umi.com.mutex.gmu.
edu/pqdweb?index=7&dlid=1541305 . . .
Kakarountas et al. “Implementation of HSSec: A High-Speed Cryp
tographic Co-Processor.” IEEE Conference on Emerging Technolo
gies and Factory Automation, Sep. 25-28, 2007. p. 625-631.
Accessed Feb. 16, 2011—IEEExplore http://ieeexplore.ieee.org/
xpls/abs all.jsp?amumber 44 16827.
Keet al. “Design of PC/104 Processor Module Based on ARM.”
International Conference on Electrical and Control Engineering, Jun.
25-27, 2010. p. 775-777. Accessed Feb. 17, 2011 IEEExplore
http://ieeexplore.ieee.org/xpis/abs all.jsp?arnumber=5630566.
Kinebuchietal. "A Hardware Abstraction Layer for Integrating Real
Time and General-Purpose with Minimal Kernel Modification.” Soft
ware Technologies for Future Dependable Distributed Systems, Mar.
17, 2009. p. 112-116. Accessed Feb. 16, 2011 IEEExplore http://
ieeexplore.ieee.org/xpls/abs all.jsp?arnumber 4804582.
Tabari, et al. “Neural Network Processor for a FPGA-based
Multiband Fluorometer Device.” International Workshop on Com
puter Architecture for Machine Perception and Sensing, Sep. 2006. p.
198-202. Accessed Feb. 16, 2011—IEEExplore http://ieeexplore.
ieee.org/xpls/abs all.jsp?amumber=435.0381.
Wang et al. “Towards High-Performance Network Intrusion Preven
tion System on Multi-core Network Services Processor.” 15th Inter
national Conference on Parallel and Distributed Systems, Dec. 8-11,
2009. p. 220-227. Accessed Feb. 16, 2011 IEEExplore.

US 8,335,864 B2
Page 3

Wong, William, “16-Bit MCU Invades 8-Bit Territory with 4-By
4-mm Chip.” Electronic Design, Sep. 29, 2005. vol.53, No. 21, p. 32.
Accessed Feb. 16, 2011—Academic Search Complete.
“Yoggie Pico Personal Security Appliance, www.yoggie.com.
(archived on May 31, 2009) Accessed Feb. 16, 2011—Archive.org).
“Yoggie Security Unveils Miniature Hardware Appliance,” www.
yoggie.com. (archived on May 31, 2009) Accessed Feb. 16, 2011—
Archive.org.

“Yoggie Unveils Miniature Internet Security Devices for Mac Com
puters.” M2 Telecomworldwire, Oct. 14, 2008. Accessed Feb. 18,
2011—Academic Source Complete).
Quan Huanget al.: "Embedded firewallbased on network processor'.
2005, IEEE, Proceedings of the Second International Conference on
Embedded Software and Systems (ICESS’05), 7 pages.

* cited by examiner

U.S. Patent Dec. 18, 2012 Sheet 1 of 8 US 8,335,864 B2

to N.

Time server
130

FIG. 1

U.S. Patent

200

Dec. 18, 2012 Sheet 2 of 8

I/O request
receiver
Module
220

Protocol I/O request
handling processing
Module Module
230 240

State Machine
260

FIG. 2

US 8,335,864 B2

Network
interface

U.S. Patent Dec. 18, 2012 Sheet 3 of 8 US 8,335,864 B2

so-N

Receive I/O requests
310

Detemine the network protocol
320

Process the I/O request according to the
network protocol

330

FIG. 3

U.S. Patent Dec. 18, 2012 Sheet 4 of 8 US 8,335,864 B2

to N.
460

HTP as Serger

listen port 80 listen port 161

as 44

State facie State achie ----- 1.

4.Y WA

SNJP iaeror
440

470

N

450

O

Etreet 82. Hadiyase

(or may be soft" controller
Tasii Receive

FIG. 4A

NA | | | | | | | *S.
Assssss:FOSSEES variata: skis& - $33, as a F Sks

FIG. 4 B

U.S. Patent Dec. 18, 2012 Sheet 5 of 8 US 8,335,864 B2

on
526

2 524 G. y u" N

(C-2
52 S). 502

1.

N
{3

Receye

interrupt

518
506

recious 1 a No.

6S, u
Any data?

Ciock banager

| 510
1.

4S) (E)
a far N

Twisted pair bus

FIG. 5

U.S. Patent Dec. 18, 2012 Sheet 6 of 8 US 8,335,864 B2

N

ACSCS

SCCKES A

C

Extensiois CR. Stack

620

P (Internet Protocol) layer 650

evice river evice river ewice Driver Ethere contre

Hárar.

680 660

672 674

FIG. 6

U.S. Patent Dec. 18, 2012 Sheet 7 of 8 US 8,335,864 B2

STATE
MACHINE

702

NETWORK
INTERFACE

710

FIG. 7

U.S. Patent Dec. 18, 2012 Sheet 8 of 8 US 8,335,864 B2

PROCESSOR
802

I/O
INTERFACE

808
MEMORY
SYSTEM

804
COMMUNICATION

INTERFACE
810

STORAGE
SYSTEM

806

FIG. 8

US 8,335,864 B2
1.

TCP/IP STACK-BASED OPERATING SYSTEM

CROSS REFERENCES TO RELATED
APPLICATIONS

This nonprovisional patent application is a continuation
application of U.S. patent application Ser. No. 12/938,290,
filed Nov. 2, 2010, titled: “TCP/IP Stack-Based Operating
System’ which claims priority to U.K. Application No.
0919253.5, filed Nov. 3, 2009, titled: “A New Architecture for
Software and Hardware Design in Miniscule Microprocessor
Systems’” and to U.K. Application No. 1010886.8, filed Jun.
29, 2010, titled: “A New Architecture for Software and Hard
ware Design in Miniscule Microprocessor Systems, for Inter
net Connected Devices, all of which are hereby incorporated
by reference in their entirety.

FIELD OF THE INVENTION

The present invention is generally related to computing
systems, and more particularly, to a protocol stack-based
computing System.

BACKGROUND

Conventional computing devices (such as a desktop, lap
top) or a “smart’ mobile phone (such as an Apple iPhone(R) or
Nokia E71(R), run an operating system. Conventional oper
ating systems include Microsoft Windows.(R), Apple OS X(R),
Symbian R, or Linux(R), and are quite similar in architecture,
in that each tends to have conventional file and memory
management operations, storage and graphical user interface
operations, and so forth.

Such conventional operating systems are old-fashioned in
their fundamental design, in as much as their core kernels date
from architectures and implementations generally several
decades old. For instance, the Apple OS X and Linux oper
ating systems are each based on the Unix operating system
which was developed in the 1970s. Similarly, Microsoft's
Windows operating system has its roots strongly in MS-DOS
operating system, itself from the 1970s. Typically, these and
other conventional operating systems follow very similar
architectures, including a layered design, device drivers, and
Application Programming Interfaces (APIs). The executable
instructions for these conventional operating systems are all
typically coded in high-level languages, such as 'C' and C++.

In a “conventional operating system, a core kernel
“executive' has essentially master control over all the opera
tion of the overlying software (other systems components,
device drivers, applications, etc.). Typically, the executive
allocates timeslices of processor execution time on a pre
emptive priority basis in threads and processes. That is, the
executive deterministically gives, in turn, registered applica
tions or processes a piece of the action. Ironically, most of the
time nothing is being done at all. For the Microsoft Windows
operating system, for example, if nothing much is going on,
the System Monitor may show that the System Idle Process is
using 98% of the available microprocessor time or clock
cycles.

Conventional microprocessor designs use a fixed-fre
quency, continuously running crystal as the timing mecha
nism for clocking through microprocessor execution cycles.
Thus, the crystal and the microprocessor continue running
even if nothing much is being accomplished in the system,
uselessly cycling around and waiting for a process to actually
performa action (e.g., process an incoming TCP/IP packet on
the Ethernet interface or perform a calculation in a spread

10

15

25

30

35

40

45

50

55

60

65

2
sheet). This timing paradigm is energy-wasteful in two
respects. First, the crystal and microprocessor transistors are
typically executing at their maximum speed at all times,
thereby consuming excess power and generating excess heat.
Secondly, it is very inefficient to continue running clock
cycles if no substantive process is actually running. However,
the conventional operating system design forces this ineffi
ciency when using, for instance, a conventional “multitask
ing.” pre-emptive prioritized operating system, such as Win
dows.(R), OS X(R) or Linux(R).

Furthermore, the conventional operating system kernel
executive must assume a hostile environment where it must
handle badly written or even malicious applications which
may hang, crash, or try to take control of the system. Conse
quently, the operating system must be constantly vigilant.

Moreover, Such conventional operating systems require
various modifications and enhancements year by year, to
cater to new requirements and technologies. Such enhance
ments are typically accomplished by "bolting on a new layer
of functionality.

For instance, the rapid rise of the Internet in recent years
has made it necessary to bolt on many new components. Such
as the communications layers of Ethernet drivers, TCP/IP
stacks, and Web browsers. Generally, these are inelegant
additions to the conventional operating system, often leading
to poor performance, software crashes, and security flaws.

SUMMARY OF THE INVENTION

In accordance with various embodiments of the present
invention, a computing system is provided that includes an
operating system of an entirely new architecture. The operat
ing system may be based fundamentally around the TCP/IP
stack. Rather than “bolting on a TCP/IP stack onto a con
ventional core operating system, the TCP/IP stack is the oper
ating system in various embodiments. All functions run
through the conventional interface, or similar extensions of
the standard Berkeley Sockets (or WinSock) Application Pro
gramming Interface (API).

In addition to the conventional Sockets APIs, such as
socket() connect() listen() and so forth, all other functions of
the operating system and associated applications may occur
around the fundamental core of the TCP/IP stack.

According to various embodiments, the entire operating
system of the enhanced TCP/IP stack is a state machine.
Instead of including conventional operating system multi
tasking structures. Such as threads, processes, and Sema
phores, etc., the operating system is an amalgam of co-oper
ating state machine oriented components.
One of the advantages of Such a computing system is that it

is inherently and fundamentally Internet-oriented. All Inter
net type functionality is natural and inherent in the computing
system design and implementation, i.e., not just bolted on as
an afterthought.
The operating system may be written in low-level Assem

bler, rather thana high-level language such as C or C++. The
use of Assembly language has the advantage of much reduced
code size, faster execution time, less microprocessor clock
cycles, and therefore less power cycles of the microprocessor.
The microprocessor, in which the operating system may be
embedded, may therefore have much lower power consump
tion than in conventional designs.

According to various embodiments, executable instruc
tions (code) and data for the operating system are stored
separately. Thus, the read-only executable instructions may
be executed directly from read only memory (ROM), and
only the read/write data needs to be saved in some type of

US 8,335,864 B2
3

random access memory (RAM). As a result, there are both
Substantial power and cost savings.
The code of the operating system may thus be implemented

in the actual microcode of the microprocessor or microcon
troller system. In some embodiments, the code is imple
mented as a hardwired microcontroller system. As used
herein, the term "central processing unit' or “CPU encom
passes any one of a microprocessor, microprocessor System,
microcontroller, and microcontroller system.
The assembled and linked code of the operating system

may be highly optimized for low power consumption, as well
as reduced ROM and RAM size. Conventional computing
systems utilize a conventional general-purpose microcontrol
ler or microprocessor architecture and a general purpose
operating system design. Such designs tend to optimize more
commonly used opcode instructions into fewer bytes. Less
commonly used opcodes take more bytes and therefore more
energy and clock cycles. According to various embodiments,
an assembler/linker code generator analyzes the actual imple
mentation-specific usage of opcode instructions and dynami
cally creates an optimized opcode instruction set to minimize
energy clock cycle usage.

In some embodiments, the microprocessor design mask
may be optimized for binary 1’s and 0's, depending on
whether a majority of 1s or 0's may produce a lower overall
power consumption.

In addition, the overall design of TCP/IP stack-based oper
ating system is inherently secure in the Internet environment,
as it is fundamentally architected around Internet principles,
and therefore not prone to security flaws inherent in bolted on
afterthought implementations.

Embodiments may provide a method including receiving,
by an operating system, input/output (I/O) requests from an
application residing in an application layer of a system, the
operating system being a state machine that comprises a
protocol stack for processing the I/O requests according to a
network protocol, the operating system being embedded
within and executing within a central processing unit (CPU),
and processing the I/O requests from the application accord
ing to the network protocol using the operating system.

Further embodiments include computing systems includ
ing a network interface coupled with a network and a central
processing unit (CPU), and the central processing unit includ
ing an operating system (OS) embedded therein, the operat
ing system being a state machine and including a kernel, the
kernel comprising a protocol stack for communicating with
one or more devices of the network via the network interface.

Embodiments may also include a chip having a central
processing unit (CPU), and an operating system embedded in
the CPU, the operating system comprising a kernel, the oper
ating system kernel being a state machine and comprising a
TCP/IP protocol stack for communicating with one or more
devices via a network interface.

Embodiments may yet further include computer-readable
storage media, having embodied thereon programs for
executing one or more exemplary methods according to the
present invention.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a diagram of an exemplary computing environ
ment in which an exemplary system having a TCP/IP stack
based operating system may be practiced.

FIG. 2 is a block diagram of an exemplary TCP/IP stack
based element.

FIG. 3 is a flow chart illustrating an exemplary method for
a system having a TCP/IP stack-based operating system.

10

15

25

30

35

40

45

50

55

60

65

4
FIG. 4A is a diagram illustrating an exemplary system that

includes a TCP/IP stack state machine-based system, with a
web server and SNMP daemon.

FIG. 4B is a timing diagram illustrating timing for an
asynchronous clock for various aspects of FIG. 4A.

FIG. 5 illustrates an exemplary TCP/IP stack state
machine-based system implemented as an HTTP web server
and the operation thereof.

FIG. 6 depicts an exemplary architecture for a TCP/IP
stack state machine-based system according to various
embodiments.

FIG. 7 illustrates an exemplary computing device accord
ing to various embodiments.

FIG. 8 depicts an exemplary computing device or time
server that may communicate with a system in an exemplary
computing environment, in some embodiments.

All the figures provided herein are exemplary only. Also,
like numbered elements in figures refer to like elements.

DETAILED DESCRIPTION

Embodiments provide systems and corresponding meth
ods providing an operating system based wholly around a
protocol stack, Such as a Transmission Control Protocol/In
ternet Protocol (TCP/IP) stack. The system may include a
central processing unit (CPU) including an operating system
embedded therein, and a network interface coupled with a
network and the CPU. The network may be the Internet. The
operating system is fundamentally a state machine. The ker
nel of the operating system is fundamentally just a protocol
stack for communicating with one or more devices of the
network via the network interface. The protocol stack may be,
but is not limited to, a TCP/IP protocol stack, UDP/IP stack,
combinations thereof, or other protocols. A chip may be pro
vided that includes the TCP/IP stack state machine based
operating system embedded in a CPU.
Among the many advantages provided by various embodi

ments of the present invention are a small hardware design,
very compact and efficient software, minimal clock cycles for
execution, a natural Internet connectivity model, and
extremely low power consumption.

FIG. 1 is a diagram of an exemplary computing environ
ment 100 in which an exemplary system having a TCP/IP
stack-based operating system may be practiced. The environ
ment 100 comprises a computing network 110, a device 120,
an optional time server 130, and clients 140A-C. Though
three clients 140A-C are shown in FIG. 1, any number of
clients may be used to practice the invention. The device 120,
the time server 130, and clients 140A-C may each comprise
one or more computing devices. A computing device may
include a desktop computer, a laptop computer, a server, a
handheld computer, a Smartphone, a personal digital assis
tant, etc.

Network 110 may be a local, proprietary network (e.g.,
intranet) and/or may be a part of a larger wide-area network.
For example, the network 110 may be a local area network
(LAN), which may also be communicatively coupled to a
wide area network (WAN), such as the Internet. Network 110
allows for communication between the various components
of environment 100.
The device 120 may communicate with one or more client

devices 140A-C over network 110. Clients 140A-C may be
devices (described in further detail with respect to FIG. 2 and
FIG. 7) that include the TCP/IP stack state machine operating
system. Clients 140A-C may each be a chip, each having the
TCP/IP stack state machine operating system embedded in a
CPU and communicating with network 110 either wired or

US 8,335,864 B2
5

wirelessly via a network interface. The device 120 may be a
computing device (described in further detail with respect to
FIG. 8) having a browser for communicating with the clients
140A-C over the network to get status or send commands. For
example, the clients 140A-C may each be a light bulb, for
example, each having a chip having the TCP/IP stack state
machine operating system embedded in a CPU. The ultra low
power and miniscule size of the chips resulting from the
present design provide that and countless other application
possibilities.

The device 120 may be a HTTP web server or Simple
Network Management Protocol (SNMP) daemon described
in further detail with respect to FIG. 4A. Alternatively, the
device 120 may be a device described in further detail with
respect to FIG. 2 that includes the TCP/IP stack state machine
operating system.
The operating system kernel does not require an accurate

internal clock source since it may get a time reference using
the Simple Network Time Protocol (SNTP) from a remote
time server, e.g., time server 130.

Device 120 and time server 130 may comprise any combi
nation of computer hardware and Software configured to
receive and transmit information over the network 110,
thereby communicating with the clients 140 A-C.

FIG. 2 is a block diagram of an exemplary TCP/IP stack
based element 200. The element 200 may be a chip into which
a TCP/IP stack based operating system is embedded, for
example. The element 200 may include a memory 210, which
may store one or more modules. Exemplary modules which
may be stored in the memory 210 include an I/O request
receiver module 220, a protocol handling module 230, an I/O
request processing module 240, and an optional network
interface module 250. It will be appreciated by one skilled in
the art that the technology described herein encompasses
those embodiments where one or more of the modules may be
combined with each other or not included in the memory 210
at all.
The element 200 may further include a state machine 260

for executing various instructions and modules stored in
memory 210. The state machine 260 may include one or more
state machines as shown and described in further detail with
respect to FIGS. 4A and 7.
A module should be generally understood as one or more

routines that perform various system-level functions and may
be dynamically loaded and unloaded by hardware and device
drivers as required. The modular Software components
described herein may also be integrated as part of an appli
cation specific component.

According to various embodiments, the modules may each
include executable instructions for the operating system
embedded into element 200 and may be executed through a
Sockets applications programming interface (API).
The I/O request receiver module 220 is configured to

receive input/output (I/O) requests. The requests may be from
an application residing in an application layer of a system as
described in further detail with respect to FIG. 6.
The protocol handling module 230 is configured to handle

a specific protocol for the protocol stack state machine imple
mentation. The protocol may be a Transmission Control Pro
tocol/Internet Protocol (TCP/IP) stack such that the operating
system is a TCP/IP stack state machine. In some embodi
ments, the protocol stack includes a different protocol stack,
e.g., a User Datagram Protocol/Internet Protocol (UDP/IP)
stack, which may be used in addition to or in place of the
TCP/IP Stack.
As will be described in greater detail later herein, the

network 110 in FIG. 1 comprises the Internet and the operat

10

15

25

30

35

40

45

50

55

60

65

6
ing system utilizes Sockets style API of sockets and ports on
IP addresses for handling I/O requests. The I/O request pro
cessing module 240 is configured to process the I/O requests
from an application according to the network protocol using
the operating system.
The optional network interface module 250 may be

included and is configured to provide an interface between the
protocol stack state machine and a network interface. The
corresponding network interface may be a hardware or a
“soft Ethernet controller as described in further detail with
respect to FIG. 4A. Alternatively, the corresponding network
interface hardware may be a wireless interface, including, but
not limited to, an 802.11 based interface, ZigBee, or Blue
tooth, etc.

FIG.3 is a flow chart illustrating an exemplary method 300
for a system having a TCP/IP stack-based operating system.
The operating system utilizes sockets style API of sockets and
ports on IP addresses for handling I/O requests.

In step 310, an I/O request is received. The request may be
from an application residing in an application layer of a
system.

In step 320, the network protocol is determined. According
to various embodiments, the protocol is TCP/IP such that the
operating system is a TCP/IP stack State machine. In some
embodiments, the protocol is UDP/IP, UDP is an unreliable
connectionless protocol sitting on top of IP, and TCP is a
connection-oriented reliable protocol. The protocol may be a
hybrid of TCP and UDP wherein a data connection stream
includes a mixture of UDP and TCP packets. UDP has less
overhead and is suitable for lower-importance information
than TCP, which has a higher overhead but essentially guar
antees reception. For instance, a stream of data comprising
non-essential information (such as low-importance data)
mixed with critical data could better be transmitted over such
a hybrid link. This hybrid protocol may be determined in step
32O.

In step 330, the I/O request is processed according to the
network protocol. The processing may be performed by the
state machine that fundamentally is the operating system,
e.g., a TCP/IP stack state machine operating system. The
operating system utilizes sockets style API of sockets and
ports on IP addresses for handling I/O requests. The conven
tional Berkeley Sockets style API of sockets and ports on IP
addresses may be used. The Berkeley sockets specify the data
structures and function calls that interact with the network
Subsystem of the operating system.

FIG. 4A is a diagram illustrating an exemplary system 400
that includes a TCP/IP stack state machine 410, with an
HTTP web server 460 and an SNMP daemon 470. The TCP/
IP stack state machine 410 is fundamentally the operating
system kernel and may embedded in a core CPU. The system
400 includes the TCP/IP stack state machine 410 and an
Ethernet 802.11 hardware 420. The Ethernet controller 420
may provide a network interface, for example, to the Internet.
In some embodiments, the Ethernet controller may be a sof
ware-based controller. The exemplary system 400 also
includes the HTTP web server 460, the SNMP daemon 470,
a listen port 80 identified as 440, and a listen port 161 iden
tified as 450. The HTTP web server 460 and SNMP daemon
470 may be devices as described in further detail with respect
to FIG.8. Additional state machines (e.g., state machine 430
and State machine 440) may be included for each correspond
ing listen port. A state machine manager component may be
included to tie the various state machines together.

Conventional microprocessors run on fixed frequency
clocks driven by a crystal which runs all the time. In contrast,
according to various embodiments, an asynchronous (vari

US 8,335,864 B2
7

able) clock may serve as an internal clock for the operating
system for the system 400. FIG. 4B is a timing diagram
illustrating timing for an asynchronous clock for various
aspects of FIG. 4A.
The asynchronous clock is configurable to automatically

stop when clock cycles are not needed. As illustrated in FIG.
4A, cooperative components cycle in turn around their state
machine cycles until they are all in a state of rest, at which
point the internal clock can stop. As shown at 480 in FIG. 4B,
theasynchronous system clock may be restarted by awake-up
“daemon' signal from the SNMP daemon, e.g. an incoming
data packet. The system 400 illustrates that there is no point
going round an endless idle loop if there is no action is
needed.
The executable instructions may be optimized to be much

tighter and more efficient than conventional systems, so much
lower clock rates may be used. A self-adjusting cycle rate may
be provided depending on load and function to be performed.
In addition, self-learning or pre-predicted algorithms for
expected scenarios may be utilized to put the CPU into a
doze' mode of fractional HZ. Any expected external event
may cause the CPU to exit the doze mode, resume full speed
operation to execute necessary operations to handle the exter
nal event, and return back to doze. In a doze or a deep sleep
mode, the CPU register contents may be read and stored in
special registers with very long deep-sleep data maintaining
capabilities. Such clock saving measures yield Substantial
power savings.

In some embodiments, no conventional crystal is used. The
operating system kernel does not require an accurate internal
clock source since it may get a time reference using the
Simple Network Time Protocol (SNTP) from a remote time
server coupled to the network, see e.g., time server 130 in
FIG. 1

FIG. 5 illustrates an exemplary TCP/IP stack state
machine-based system 500 implemented as an HTTP web
server and operation thereof. The system includes the TCP
502 on top of IP 504 on top of Ethernet (e.g., NE2000)
hardware 506. The system also may include a twisted pair bus
520 coupled to the Ethernet hardware 506. A clock manager
508 may also be included.

In operation, the system 500 may function as a simple web
server comprising a TCP/IP state machine for handling the
lower operation of receiving Ethernet packets up through the
TCP/IP stack, and responding to HTTP requests. The system
as web server would open a port on a socket on an IP address
(e.g., port 80 identified at 522), and listen on that port. Port
data is read at 524, the HTTP requests are parsed at 526, and
responses are sent from a respond block 528.
When no tasks need to be done, the state machine is idle.

The clock manager 508 causes a turn off state 510 based on a
determination at 512 that there is no data to process. An
asynchronous system clock may be restarted by a wake-up
“daemon' signal 514 received after a wait for interrupt state
516. The receive interrupt block 518 sends the interrupt to the
wait for interrupt state 516 in response to receiving data.

FIG. 6 depicts an exemplary architecture 600 for a TCP/IP
stack state machine-based system according to various
embodiments. The operating system kernel architecturally
includes the portion of the system between applications 640
and hardware 680 and operates between applications 640 and
hardware 680. The kernel fundamentally includes a TCP/IP
stack which the whole operating environment is built around.
The kernel may include TCP extensions 620 which, together
with the TCP stack 610, is above an IP (Internet Protocol)
layer 650. The kernel may include one or more device drivers
670, 672, and 674, as well as an Ethernet controller 660.

10

15

25

30

35

40

45

50

55

60

65

8
The fundamental application programming interface (API)

for all operations of the operating system may be the conven
tional Berkeley Sockets style API of sockets and ports on IP
addresses. The Berkeley sockets specify the data structures
and function calls that interact with the network subsystem of
the operating system. The kernel handles all the normal Sock
ets APIs. The sockets API 630 may also include some opti
mized APIs.
Any non-conventional functions, outside the normal Inter

net ones, are handled in exactly the same manner, e.g., by
opening Sockets and binding to ports. Thus, the accessing of
local input and output (e.g., keyboards, mice, and display
screens) may all be accomplished through socket/port opera
tions. Consequently, it is quite transparent as to whether a
device is local or remote—a keyboard could be on a localhost
at 127.0.0.1, for example, or remote on another IP address.
Though this transparency may be an aspect of other operating
systems, it is generally not fundamentally inherent in the
operating system design from the outset. Accordingly, the
“naked' kernel can be tiny in a minimal configuration, per
haps as Small as just a few hundred bytes in size.

FIG. 7 illustrates a computing device 700 according to
various embodiments. The computing device 700 comprises
a state machine 702, a read only memory (ROM) 704, a
random access memory (RAM) 718, a network interface 710,
and optionally, additional state machines such as 714 and 716,
which are all coupled to a system bus 706. Like state machine
260 (FIG. 2), state machine 702 is configured to execute
executable instructions in a state machine manner. When no
tasks need to be done, the state machine 702 is idle.
The network interface 710 may be any device that may

receive data from a network or provide data to the system bus
706. The network interface 710 may be coupled to any digital
device via the link 712. The network interface 710 may
include, but is not limited to, a hardware or software Ethernet
interface/controller, a wireless interface (e.g., 802.11, Zig
Bee, or Bluetooth). It will be apparent to those skilled in the
art that the network interface 710 can support many wired and
wireless standards.

Examples of the state machines 714 and 716 is provided in
FIG. 4A where state machines 430 and 440 operate along
with the TCP/IP stack state machine 410. The state machines
714 and 716, like state machines 430 and 440, may be tar
geted to handle specific low level tasks, e.g., for listening to
ports, etc. A state machine manager component may be
included to tie the various state machines together.
Some of the above-described functions can be composed of

instructions that are stored on storage media (e.g., computer
readable medium). The instructions may be retrieved and
executed for the state machine 702. Some examples of storage
media are memory devices, tapes, disks, integrated circuits,
and servers. The instructions are operational when executed
by the state machine 702 to direct the state machine 702 to
operate in accord with various embodiments of the invention.
Those skilled in the art are familiar with instructions, proces
sor(s), and storage media.

FIG. 8 depicts an exemplary computing device 800 that
may communicate with the system in an exemplary comput
ing environment, in some embodiments. The time server 130
in FIG. 1 may be implemented as computing device 800.
Device 120 in FIG. 1 may be implemented as device 700 in
FIG. 7 or device 800 in FIG. 8 depending on the particular
desired environment. The computing device 800 comprises a
processor 802, a memory system 804, a storage system 806,
an input/output (I/O) interface 808, and a communication
interface 810, which are all coupled to a system bus 812.
Processor 802 is configured to execute executable instruc

US 8,335,864 B2

tions. In some embodiments, the processor 802 comprises
circuitry or any processor capable of processing the execut
able instructions.
The memory system 804 is any memory configured to store

data. Some examples of the memory system 804 are storage
devices, such as RAM or ROM. The storage system 806 is any
storage configured to retrieve and store data. Some examples
of the storage system 806 are flash drives, hard drives, optical
drives, and/or magnetic tape. The storage system 806 may
comprise a data structure configured to hold and organize
data.
The I/O interface 808 is any device that may receive data

from a client or provide data to the client. The I/O interface
808 may include, but is not limited to, a keyboard, a monitor,
a mouse, a speaker, a microphone, or a camera.
The communication interface 810 may be coupled to any

digital device via the link 814. The communication interface
810 may support communication over a Universal Serial Bus
(USB) connection, a firewire connection, an Ethernet connec
tion, a serial connection, a parallel connection, or an
Advanced Technology Attachment (ATA) connection. The
communication interface 810 may also support wireless com
munication (e.g., 802.11a/b/g/n or wireless USB). It will be
apparent to those skilled in the art that the communication
interface 810 can support many wired and wireless standards.
Some of the above-described functions can be composed of

instructions that are stored on storage media (e.g., computer
readable medium). The instructions may be retrieved and
executed by the processor 802. Some examples of storage
media are memory devices, tapes, disks, integrated circuits,
and servers. The instructions are operational when executed
by the processor 802 to direct the processor 802 to operate in
accord with the invention. Those skilled in the art are familiar
with instructions, processor(s), and storage media.

Conventional operating systems manage internal tasks and
external programs in a dictatorial manner, by preemptively
multitasking through threads and processes. Such a system is
flexible and general purpose in nature. However, it may not be
optimal since applications and unknown driver components
have little or no control over their scheduling.

In contrast to conventional operating systems, the operat
ing system according to the various embodiments of the sys
tem regards the whole environment as being inherently coop
erative and friendly. To that end, the whole system is
essentially a giant state machine. There is no executive, just a
cooperative state machine model. All systems and applica
tions components are built together in an open and symbiotic
relationship. Only components actually required in a target
system are built into the environment. For instance, one
would not generally find the game Solitaire on a server imple
menting embodiments of the present invention, as with some
network operating systems.

Running a state machine would not be like the method of
running time slices in a conventional pre-emptive system,
which is a very wasteful method. Some of the various advan
tages provided by the state machine according to various
embodiments are illustrated by an example of putting
together an internet server system which has the simple task
of running a web server.

In a conventional operating system, the kernel and other
systems components would comprise all the normalfunctions
of file and memory management, timers, input and output,
TCP/IP, etc. A web server would sit on top of the TCP/IP stack
which is itself sitting on top of the core operating system
stacks and drivers. In operation, the web server would open a
port on a socket on an IP address (e.g. port 80) and listen() on
that. There would be numerous threads and processes going

10

15

25

30

35

40

45

50

55

60

65

10
on in the background, as the kernel executive cycles (usually
Somewhat uselessly) around all the running processes, updat
ing clocks, checking communication ports, updating dis
plays, checking on Ethernet traffic, and so forth. In this way,
the conventional operating system provides a highly Sophis
ticated and flexible system, but with the downside of a tre
mendous number of activities (and hence clock cycles and
therefore energy) going on all the time, just to run perhaps a
simple web server.

In contrast, an implementation for this example according
to various embodiments of the system may include only the
required components (e.g., web server implementation fur
ther described with respect to FIG. 5). As a result, execution
times and minimal code size would be optimized, resulting in
fewer energy cycles. Such a simple web server has just the
state machine running handling the lower operation of receiv
ing Ethernet packets up through the TCP/IP stack and
responding to HTTP requests. When no tasks need to be done,
the state machine is idle. In essence, the system hardware is
therefore designed for the good of the software, and the soft
ware is designed for the good of the hardware.
One of the drawbacks of conventional general purpose

microprocessors is that opcodes are predefined and static.
Specifically, common opcodes are allocated to single byte
instructions, whereas less common, but perhaps more pow
erful opcodes, are allocated to multiple byte opcode struc
tures. This conventional approach provides flexibility, but is
not optimized. In contrast, a system builder according to
various embodiments of the present invention may dynami
cally profile the code and build an optimal opcode set for the
microcode depending on the style of the programmer, in order
to minimize various required parameters, such as energy
cycles, code size, or a combination thereof. A library for the
pre-planned code segments may also be provided to minimize
overhead for the code.
The system may also attempt to identify what Sub-pro

cesses in a larger process system need to be executed sequen
tially and which Sub-processes might be executable in paral
lel. The system may provide a simple state machine model of
a small number of cooperative elements. For more complex
systems, a State Machine Manager (SMM) may be provided
to regulate and control the run flow. In operation, applications
register priority and execution parameter requests with the
SMM, which in turn handles them accordingly in a fair man

.

As described above, the CPU is not designed to be general
purpose. To that end, the more arcane commands and gates
that apply to a vast majority of applications are simply
removed. The design philosophy in regards to the opcode
instruction set is to design the operating system Software first,
then optimize the operating system for building in silicon. To
that end, the system reuses as many pieces of microcode
pertaining to opcodes and opcode Snippets as possible.

In the conventional paradigm, the CPU is designed first and
thereafter an operating system is designed to run on the CPU.
As a result, the operating system design is limited by com
promises dictated by the CPU chip design. The applications
are then designed to run on the operating system. The design
of the applications is limited by all the limitations dictated by
the particular operating system design.

In contrast to this conventional design paradigm, the
present embodiments begin with the operating system design.
Any unnecessary aspects are removed for the design. The
CPU chip layout may then be designed. The design process
may be iterated to make still further reductions down to the
essential components. A program builder, which essentially

US 8,335,864 B2
11

assembles (or may compile) and links and binds, essentially
compiles the mask for the microcode of the microprocessor.

Various embodiments of the system include a core CPU
chip with the operating system embedded, and may also
include different flavors of adjacent personality chips which
are programmable with the high-level application develop
ment translation utility. For example, the basic system
according to Some embodiments may include just a core CPU
having the operating system embedded and an IEEE 802.11
Ethernet controller, but with no display or keyboard drivers.
In some embodiments, various elements are added to the
basic system individually or in combination including micro
web servers and browsers, SNMP agents, email servers and
clients, SMS servers and clients, etc. Other elements that may
be included in a system individually or in combination
include power Supplies (direct and indirect), and other con
nectivity options, such as ZigBee or Bluetooth wireless capa
bility, etc. The design and build process for various embodi
ments of the system are targeted for reducing gate count,
maximizing cycle usage, and Substantially reducing energy
SC.

In conventional systems, instruction pointers are only
incremented after a “program fetch, when the microproces
Sor reads the next instruction from memory. According to
another aspect of the present invention, an instruction pointer
register in the microprocessor may be decremented as well as
incremented. A string of opcodes may then be executed for
wards or backwards, i.e., providing executable code capabil
ity. As a result, code may be reused to save space by running
Some code backwards.

In conventional systems, a code byte is read from the
instruction pointer address and executed, or another byte is
read depending on the opcode, etc. The instruction pointer
may be revectored automatically by, for example, executing a
JUMP instruction. According to another embodiment of the
present invention, the instruction pointer may be revectored
by a higher-level instruction pointer manager in the core CPU
microcode. That is, the CPU design provides that a higher
level instruction pointer manager can force a jump in the
instruction pointer to execute preferable code. This revector
ing provides a different mechanism over and above a standard
software or hardware interrupt controller.

Depending on the particular hardware design implementa
tion, binary 1's or 0's may take more or less power to
Support. According to another aspect, an optimizing code
generator may dynamically analyze the opcode and data
binary structures and Switch accordingly to the most energy
efficient implementation of binary 1’s and 0's. In other words,
the microprocessor design mask may be optimized forbinary
1’s and 0's, depending on whether a majority of 1s or 0's may
produce a lower overall power consumption.

According to various embodiments, the system and oper
ating system code executes in ROM. The ROM-execution,
execution as a state machine, and the saving of register con
tents during deep sleep provide an “instant-on' capability
where it may take just milliseconds for the system to resume
execution. RAM memory may be used for only truly read
write data that requires it. The execute-only code needs only
to be in ROM. The slower access times of ROM devices
versus RAM devices are not an issue because the instruction
cycle times for the system are generally slow, albeit for a
reduced number of cycles.

According to another aspect, the system eliminates wasted
internal clock cycles through the use of intelligent tasking, in
contrast to multi-tasking. The intelligent tasking may include
having pre-plan code nests in the CPU, so that different steps

5

10

15

25

30

35

40

45

50

55

60

65

12
of different code streams can execute in the gaps inevitably
left in their processes. For example, for a code stream a and
code streamb as follows:

code stream a:
DO . . . WAIT . . . WAIT . . . WAIT . . . WAIT . . . DO . . .
DO . . . WAIT . . . WAIT ... WAIT . . . DO
code stream b:

WAIT . . . WAIT . . . DO . . . DO . . . DO . . . WAIT . . .
WAIT ... WAIT . . . DO . . . WAIT ... WAIT
The intelligent tasking interleave these code streams intel

ligently to greatly reduce the inefficient wait cycles as fol
lows:
DO . . . WAIT . . . DO . . . DO . . . DO . .
WAIT . . . DO . . . WAIT . . . DO
The ultra-low energy and size reduction provided by the

system according to the present invention may make it fea
sible to include embedded Internet capability in a whole
range of devices that would otherwise lack it due to the
conventional micro-controllers being too big and consuming
too much power. The system may reduce power consumption
from Watts to microWatts, or perhaps even to nano Watts. For
example, Some light bulbs and Switches may be Internet
enabled for the first time using embodiments of the system.

Turning to further details regarding the Software imple
mentation, the operating system Software may be completely
developed in native assembler. The fundamentally overriding
requirement for the system is to aim for the utmost perfor
mance, in everything from code size, ROM-execution, revers
ible code, clock (energy) cycle counting, and so forth. The
system has no conventional requirement for “easy portabil
ity”, which would normally point to a C or C++ based
implementation that can be easily ported. In contrast, porting
the system to a new microprocessor entails recoding the
assembler implementation for a new microprocessor, a
straight-forward task for those skilled in the art.
The system may implement, at the lowest level of security,

SSL, i.e., HTTPS for web browsing. At a higher level,
S-HTTP may be implemented for web browsing. The system
may also implement a lightweight real time streaming proto
col (“LDF). This protocol may be used for data as well as
“command and control. Data packets may be easily
encrypted at several levels from easy-low to secure-high, e.g.,
private/public key encryption.
The system may include ultra low power microprocessors,

tiny embedded Internet operating systems, and associated
software products, such as Software Development Kits
(SDKs) to enable third parties to develop applications, and
application Suites for managing devices. Various application
areas for the system include, but are not limited to, clean tech
(green energy), medical, military, aerospace, automotive,
Smartphone, Personal Digital Assistant (PDA), Pocket Com
puter, and so forth. In the clean tech area, for example, one
application for the system of the present invention may be “a
tiny Internet chip in every light bulb. Such a chip-in-a-light
bulb could, for instance, be wired directly from an available
“free 24OV or 11 OV AC voltage supply, utilizing N-type
Metal Oxide Semiconductor (NMOS) for providing “super
strong high Voltage and very low current consumption chips.
In some embodiments, an inductor may be used to generate
isolated low voltage from the power line AC cycles. The
network traffic may be transmitted over the powerline. One of
the advantages of the present system for a chip-in-a-lightbulb
application is that low data rates can be used to handle the
anticipated light data traffic.

Electrical devices in a house or office, such as lightbulbs,
Switches and plugs which use the present system, could be
carefully monitored and controlled from a smart meter or

DO . . . DO . . .

US 8,335,864 B2
13

desktop web browser. The devices may have the present sys
tem implement a micro web server embedded for command
and control. A web browser or SNMP management program
could display all Such devices in a local Smart grid, monitor
them, turn them on and off, reduce power, schedule the device
to run at the most efficient and economical time (e.g., a
dishwasher) etc.

Exemplary medical applications include use of the present
system for Stents. A stent is a synthetic tube inserted into a
natural passage/conduit in the body to prevent, or counteract,
a disease-induced, localized flow constriction. A tiny chip
implementing an embodiment of the present system could be
built into each stent along with a tiny ultra long life and low
power RF transmitter/receiver. The modified stent could send
data about the state of the artery in realtime over the wireless
Internet, such that a patient's condition can be monitored live,
perhaps 24 hours a day.
The present system could also be used for other medical

patient monitoring applications where the Small size, low
power and Internet monitoring aspects would provide enor
mous benefits, e.g., use in a “digital plaster stuck to a
patient’s body to track vital signs (such as heart rate and
breathing) and then send alerts to doctors over the Internet.

The present system may provide ultra low power Internet
operating system and microprocessor products for use in
many other product areas, such as military, aerospace, and
automotive, as well as next-generation Smartphones, PDAs,
Pocket Computers. Currently unknown new classes of appli
cations may be made possible by the present system. Other
exemplary applications include low power devices needed for
unmanned and manned missions to other planets and new
network architectures for motor vehicles.
The ultra low power aspect of the present system may

provide greatly improved battery life for various devices.
Boot up time for devices may be greatly reduced by executing
instructions from ROM, saving general state information in
battery-backed SRAM, and saving crucial microprocessor
register setting and other state information saved in special
registers in custom ASICs, for example.

Chips implementing the present system may communicate
over various means including but not limited to: Standard
twisted pair Ethernet, coax, ZigBee, Bluetooth, Low Power
Bluetooth, and perhaps wireless Ethernet. A server embedded
in the dongle of a twisted pair Ethernet connector could be
one of the countless potential applications for the present
system
The system may include software development tools for

the operating system and the microprocessor chip design, e.g.
assembler, linker, BIN-to-ROM tools, debugger, etc.
A full Internet Protocol stack typically includes an appli

cation layer, transport layer, internet layer, and link layer. The
basic operating system for the present system may not nor
mally have all the components of a full Internet Protocol
stack. A basic kernel may have for example just HTTP on top
of TCP on top of IP on top of Ethernet. Alternatively, the
kernel may be built with SNMP on UDP on IP on Ethernet.

Conventionally, TCP/IP is not an operating system, but a
communications stack, typically using a Berkeley Sockets (or
WinSock) style API. A simple sequence for a web server for
Windows would include: 1. Initialize Winsock; 2. Create a
socket; 3. Bind the socket; 4. Listen on the socket for a client;
5. Accept a connection from a client; 6. Receive and send
data; and 7. Disconnect.

According to various embodiments, the operating system
API for the system is uniquely, purely Sockets-based. Since it
is also Assembler-based, the normal 'C' based Sockets APIs
are replaced with custom register-based analogies. Parameter

10

15

25

30

35

40

45

50

55

60

65

14
passing of other programming languages may be replaced by
microprocessor register passing.
The operating system kernel is built per application to

include only the necessary APIs. The kernel also may provide
a configurable set of built-in device drivers and application
modules. The built-in device drivers may include, for
example, drivers for console display, graphics display, html,
xml, keyboard, mouse, serial port, USB port, and Ethernet.
Other built-in and API application functions may include
SMS, email, Twitter, Facebook, MySpace, Call, and Search
(e.g., Google, Bing).

For applications such as clean tech, such as Smart light
bulbs and switches, a new protocol at the low level of the
Internet Control Message Protocol (ICMP) may be devised to
poll and control smart devices. Such a protocol lies a little
above the IPlayer, but well below protocols such as UDP or
TCP. There is not necessarily the need to have the overhead of
a full TCP implementation or a conventional SNMP module.
Advantages of the new protocol include a smaller kernel, and
a communications protocol optimized to the particular
requirements.

Alternatively, SNMP and a web server may be used (see
FIG. 4A as described above). This would be akin to the way
it has long been possible to control a router or printer over the
internet, by connecting to the URL or IP address of the device.
With the present system, this would be possible for any
device, no matter how Small or cheap.

Microprocessor opcode may be optimized for implemen
tations. A minimal opcode set may form the basis of the
operating system/CPU instruction set. Many x86 opcodes, for
example, may basically not be used at all in an optimal imple
mentation of a highly Internet-centric system of the present
invention. Such extraneous opcodes waste transistors in a
CPU and therefore are not included in the minimal set. Con
versely, there are some operations which are often used in an
internet Software implementation, Such as Internet Checksum
calculations, IP address parsing, CRC number generation,
and packet deconstruction which could be optimized even as
single opcodes.
The terms “computer-readable storage medium' and

“computer-readable storage media” as used herein refer to
any medium or media that participate in providing instruc
tions to a CPU for execution. Such media can take many
forms, including, but not limited to, non-volatile media, Vola
tile media and transmission media. Non-volatile media
include, for example, optical or magnetic disks, such as a
fixed disk. Volatile media include dynamic memory, Such as
system RAM. Transmission media include coaxial cables,
copper wire and fiber optics, among others, including the
wires that comprise one embodiment of a bus. Transmission
media can also take the form of acoustic or light waves. Such
as those generated during radio frequency (RF) and infrared
(IR) data communications. Common forms of computer
readable media include, for example, a floppy disk, a flexible
disk, a hard disk, magnetic tape, any other magnetic medium,
a CD-ROM disk, digital video disk (DVD), any other optical
medium, any other physical medium with patterns of marks
or holes, a RAM, a Programmable Read Only Memory
(PROM), an Erasable Programmable Read Only Memory
(EPROM), an Electrically Erasable Programmable Read
Only Memory (EEPROM), a FLASH Erasable Program
mable Read Only Memory (FLASHEPROM), any other
memory chip or cartridge, a carrier wave, or any other
medium from which a computer can read.

Various forms of computer-readable media may be
involved in carrying one or more sequences of one or more
instructions to a CPU for execution. A bus carries the data to

US 8,335,864 B2
15

system ROM (or RAM), from which a CPU retrieves and
executes the instructions. The instructions received by System
ROM (or RAM) can optionally be stored on a fixed disk either
before or after execution by a CPU.

The above description is illustrative and not restrictive.
Many variations of the invention will become apparent to
those of skill in the art upon review of this disclosure. The
scope of the invention should, therefore, be determined not
with reference to the above description, but instead should be
determined with reference to the appended claims along with
their full scope of equivalents.

While the present invention has been described in connec
tion with a series of preferred embodiments, these descrip
tions are not intended to limit the scope of the invention to the
particular forms set forth herein. It will be further understood
that the methods of the invention are not necessarily limited to
the discrete steps or the order of the steps described. To the
contrary, the present descriptions are intended to cover Such
alternatives, modifications, and equivalents as may be
included within the spirit and scope of the invention as
defined by the appended claims and otherwise appreciated by
one of ordinary skill in the art.
What is claimed is:
1. A method comprising:
receiving, by an operating system, input/output (I/O)

requests from an application residing in an application
layer of a system, the operating system comprising a
kernel, the operating system kernel being a state
machine that comprises a protocol stack for processing
the I/O requests according to a network protocol, the
operating system being embedded within and executing
within a central processing unit (CPU);

wherein all executable instructions for the operating sys
tem are stored in memory of the CPU and executed
through a sockets applications programming interface
(API):

wherein all the functions of the operating system and any
associated application occur through the protocol stack
and the sockets API; and

processing the I/O requests from the application according
to the network protocol using the operating system.

2. The method of claim 1, wherein the protocol stack com
prises a Transmission Control Protocol/Internet Protocol
(TCP/IP) stack such that the operating system is a TCP/IP
stack state machine.

3. The method of claim 1, wherein the protocol stack com
prises a User Datagram Protocol/Internet Protocol (UDP/IP)
stack.

4. The method of claim 1, wherein processing the I/O
requests comprises communicating data via a network inter
face, the network interface comprising one of an Ethernet
controller and a wireless interface.

5. The method of claim 1, further comprising accessing via
the sockets API one or more of a keyboard input device and a
display output device.

6. A non-transitory computer-readable storage medium
having embodied instructions thereon, the instructions
executable by a processor in a computing device to perform a
method, the method comprising:

receiving, by an operating system, input/output (I/O)
requests from an application residing in an application
layer of a system, the operating system comprising a
kernel, the operating system kernel being a state
machine that comprises a protocol stack for processing
the I/O requests according to a network protocol, the
operating system being embedded within and executing
within a central processing unit (CPU);

10

15

25

30

35

40

45

50

55

60

65

16
wherein all executable instructions for the operating sys

tem are stored in memory of the CPU and executed
through a sockets applications programming interface
(API):

wherein all the functions of the operating system and any
associated application occur through the protocol stack
and the sockets API; and

processing the I/O requests from the application according
to the network protocol using the operating system ker
nel.

7. The non-transitory computer-readable storage medium
of claim 6, wherein the protocol stack comprises a Transmis
sion Control Protocol/Internet Protocol (TCP/IP) stack such
that the operating system is a TCP/IP stack state machine.

8. The non-transitory computer-readable storage medium
of claim 6, wherein the protocol stack comprises a User
Datagram Protocol/Internet Protocol (UDP/IP) stack.

9. The non-transitory computer-readable storage medium
of claim 6, wherein processing the I/O requests comprises
communicating data via a network interface, the network
interface comprising one of an Ethernet controller and a wire
less interface.

10. The non-transitory computer-readable storage medium
of claim 6, further comprising accessing via the Sockets API
one or more of a keyboard input device and a display output
device.

11. A computing system comprising:
a network interface coupled with a network and a central

processing unit (CPU);
the central processing unit including an operating system

(OS) embedded therein, the operating system compris
ing a kernel, the operating system kernel being a state
machine that and comprising a protocol stack for com
municating with one or more devices of the network via
the network interface;

wherein all executable instructions for the operating sys
tem are stored in memory of the CPU and executed
through a sockets applications programming interface
(API); and

wherein all the functions of the operating system and any
associated application occur through the protocol stack
and the sockets API.

12. The computing system of claim 11, wherein the net
work interface further comprises one of an Ethernet controller
and a wireless interface.

13. The computing system of claim 11, wherein the proto
col stack comprises a Transmission Control Protocol/Internet
Protocol (TCP/IP) stack such that the operating system is a
TCP/IP stack state machine.

14. The computing system of claim 11, wherein the proto
col stack comprises a User Datagram Protocol/Internet Pro
tocol (UDP/IP) stack.

15. The computing system of claim 11, wherein executable
instructions for the operating system are stored solely in read
only memory (ROM).

16. The computing system of claim 11, further comprising
an asynchronous clock to serve as an internal clock for the
operating system.

17. The computing system of claim 16, wherein the asyn
chronous clock is configurable to automatically stop when
clock cycles are not needed.

18. The computing system of claim 11, wherein a time
reference for the operating system kernel is based on a Simple
Network Time Protocol (SNTP) from a remote time server
coupled to the network.

US 8,335,864 B2
17

19. The computing system of claim 11, wherein the net
work further comprises the Internet and the operating system
utilizes sockets style API of sockets and ports on IP addresses
for handling I/O requests.

20. The computing system of claim 11, wherein instruc
tions for the operating system, executable by the central pro
cessing unit and stored in memory, are written in assembly
language.

21. A chip comprising:
a central processing unit (CPU);
an operating system embedded in the CPU, the operating

system comprising a kernel, the operating system kernel
being a state machine and comprising a TCP/IP protocol
stack for communicating with one or more devices via a
network interface;

wherein all executable instructions for the operating sys
tem are stored solely in and execute solely from read

5

10

15

18
only memory (ROM) and execute through a sockets
applications programming interface (API); and

wherein all the functions of the operating system and any
associated application occur through the protocol stack
and the sockets API.

22. The chip of claim 21, wherein the network interface
further comprises one of an Ethernet controller and a wireless
interface.

23. The chip of claim 21, wherein the network comprises
the Internet and the operating system utilizes Sockets style
API of sockets and ports on IP addresses for handling I/O
requests.

24. The chip of claim 21, further comprising an asynchro
nous clock to serve as an internal clock for the operating
system kernel.

